Section 6.2 solutions

#1 - 4: Determine if the functions are one to one by using the horizontal line test.

1) This is NOT a one to one function as a horizontal line can be drawn to touch the graph in more than one place

Answer: not one to one

3) This is supposed to be a one to one function as no horizontal line can be drawn to touch the graph in more than one place.

Answer: one to one

5) f(x) = 2x - 5

Answer: is one to one (graph passes horizontal line test)

Answer: not one to one (fails the horizontal line test)

Answer: not one to one (fails the horizontal line test)

11) $f(x) = x^3$

Answer: is one to one (graph passes horizontal line test)

#13 - 18: Determine which of the functions are one to one. If a function is one to one find its inverse.

13) f = { (0,1) (1,4) (2,4) (3,5)}
Answer: not one to one (duplicate y-coordinates)

15) $h = \{(0,3) (5,1) (7,11) (9, -3)\}$

Answer: is one to one (all y's are unique)

We need to find the inverse since the function is one to one. Just switch the x and y's to do this. $h^{-1} = \{ (3,0) (1,5) (11,7) (-3,9) \}$

17) m = { (0,2) (2,3) (3,5)} Answer: is one to one (all y's are unique)

We need to find the inverse since the function is one to one. Just switch the x and y's to do this. $m^{-1} = \{ (2,0) (3,2) (5,3) \}$ 19) Switch the x and y of each given point, plot new points and draw graph. The new graph should have points (-3,0) (3,1) and (9,2)

21) Switch the x and y of each given point, plot new points and draw graph. The new graph should have points (8,-1) (2,0) (-4,1)

23) Switch the x and y of each given point, plot new points and draw graph. The new graph should have points $(1/8, \frac{1}{2})$ (-1/8, -1/2) (8,2) (-8,-2)

25) Switch the x and y of each given point, plot new points and draw graph. The new graph should have points (0,0) (2,4) (1,1) (3,9)

27) f(x) = 2x - 4

27a) Find the inverse of each function, and express it using appropriate notation.

First change function notation to y

y = 2x - 4

Second switch the x and y to create the inverse

Third solve for y

x + 4 = 2y

 $\frac{x+4}{2} = y$ (this fraction can be rewritten as $\frac{1}{2}x + 1 = y$)

Fourth write answer with inverse notation

Answer: $f^{-1}(x) = \frac{x+4}{2}$

27b) Check your answer by showing that $(f \circ f^{-1})(x) = x$ and $(f^1 \circ f)(x) = x$

$(f \circ f^{-1})(x) = f(f^{-1}(x))$	$(f^{-1} \circ f)(x) = f^{-1}(f(x))$
$(f \circ f^{-1})(r) - 2(f^{-1}(r)) - 4$	f(x) = 1 (b) (c) $f(x) = 4$
$(j \circ j \circ j)(x) = L(j \circ (x))$	$(f^{-1} \circ f)(x) = \frac{f^{-1}}{x}$
(x + 4)	
$(f \circ f^{-1})(x) = 2(\frac{1}{2}) - 4 = x + 4 - 4 = x$	2x-4+4 2x
	$(f^{-1} \circ f)(x) == x$

27c) Graph the function and its inverse and the line y = x on the same coordinate axis. (inverse drawn with dashed line)

29)
$$f(x) = \frac{x-2}{3}$$

29a) Find the inverse of each function, and express it using appropriate notation.

First change function notation to y

$$y = \frac{x-2}{3}$$

Second switch the x and y to create the inverse

 $x = \frac{y-2}{3}$ (multiply by 3 to clear fraction)

Third solve for y

3x = y - 2

3x + 2 = y

Fourth write answer with inverse notation

Answer: $f^{-1}(x) = 3x+2$

29b) Check your answer by showing that $(f \circ f^{-1})(x) = x$ and $(f^1 \circ f)(x) = x$

$(f \circ f^{-1})(x) = f(f^{-1}(x))$	$(f^{-1} \circ f)(y) = f^{-1}(f(y))$
$(f \circ f^{-1})(x) = \frac{f^{-1}(x)-2}{2}$	$(f \circ f)(x) = f \circ f(x)$
3x+2-2 3x	$(f^{-1} \circ f)(x) = 3(f(x)) + 2$
$(f \circ f^{-1})(x) = \frac{1}{3} = \frac{1}{3} = x$	$(f^{-1} \circ f)(x) = 3\frac{x-2}{3} + 2 = x-2+2 = x$

29c) Graph the function and its inverse and the line y = x on the same coordinate axis. . (inverse drawn with dashed line)

31)
$$f(x) = \frac{2}{x}$$

31a) Find the inverse of each function, and express it using appropriate notation.

First change function notation to y

$$y = \frac{2}{x}$$

Second switch the x and y to create the inverse

 $x = \frac{2}{y}$ (multiply by y to clear fraction)

Third solve for y

xy = 2 $y = \frac{2}{x}$

Fourth write answer with inverse notation

Answer: $f^{-1}(x) = \frac{2}{x}$

31b) Check your answer by showing that $(f \circ f^{-1})(x) = x$ and $(f^1 \circ f)(x) = x$

$(f \circ f^{-1})(x) = f(f^{-1}(x))$	$(f^{-1} \circ f)(x) = f^{-1}(f(x))$
$(f \circ f^{-1})(x) = \frac{2}{f^{-1}(x)}$	$(f^{-1} \circ f)(x) = \frac{2}{f(x)}$
$(f \circ f^{-1})(x) = \frac{2}{\frac{2}{x}} = 2 * \frac{x}{2} = x$	$(f^{-1} \circ f)(x) = \frac{2}{\frac{2}{x}} = 2 * \frac{x}{2} = x$

31c) Graph the function and its inverse and the line y = x on the same coordinate axis. . (only one graph shown as function is its own inverse)

33) $f(x) = \sqrt[3]{x-4}$

33a) Find the inverse of each function, and express it using appropriate notation.

First change function notation to y

$$y = \sqrt[3]{x-4}$$

Second switch the x and y to create the inverse

$$x = \sqrt[3]{y-4}$$

Third solve for y

$$x^3 = \sqrt[3]{y-4}^3$$

$$x^3 = y - 4$$

$$x^{3} + 4 = y$$

Fourth write answer with inverse notation

Answer: $f^{-1}(x) = x^3 + 4$

33b) Check your answer by showing that $(f \circ f^{-1})(x) = x$ and $(f^1 \circ f)(x) = x$

$(f \circ f^{-1})(x) = f(f^{-1}(x))$	$(f^{-1} \circ f)(x) = f^{-1}(f(x))$
$(f \circ f^{-1})(x) = \sqrt[3]{f^{-1}(x) - 4}$	$(f^{-1} \circ f)(x) = (f(x))^3 + 4$ $(f^{-1} \circ f)(x) = \sqrt[3]{x-4}^3 + 4 = x-4 + 4 = x$
$(f \circ f^{-1})(x) = \sqrt[3]{x^3 + 4 - 4} = \sqrt[3]{x^3} = x$	

33c) Graph the function and its inverse and the line y = x on the same coordinate axis. . (inverse drawn with dashed line)

35)
$$f(x) = x^3 + 2$$

35a) Find the inverse of each function, and express it using appropriate notation.

First change function notation to y

$$y = x^3 + 2$$

Second switch the x and y to create the inverse

 $x = y^3 + 2$

Third solve for y

 $x - 2 = y^3$

$$\sqrt[3]{x-2} = \sqrt[3]{y^3}$$

$$\sqrt[3]{x-2} = y$$

Fourth write answer with inverse notation

Answer: $f^{-1}(x) = \sqrt[3]{x-2}$

35b) Check your answer by showing that $(f \circ f^{-1})(x) = x$ and $(f^1 \circ f)(x) = x$

$(f \circ f^{-1})(x) = f(f^{-1}(x))$	$(f^{-1} \circ f)(x) = f^{-1}(f(x))$
$(f \circ f^{-1})(x) = (f^{-1}(x))^3 + 2$	$(f^{-1} \circ f)(x) = \sqrt[3]{f(x)} - 2$
$(f \circ f^{-1})(x) = \sqrt[3]{x-2}^3 + 2 = x-2 + 2 = x$	$(f^{-1} \circ f)(x) = \sqrt[3]{x^3 + 2 - 2} = \sqrt[3]{x^3} = x$

35c) Graph the function and its inverse and the line y = x on the same coordinate axis. . (inverse drawn with dashed line)

